Fast and Robust Bootstrap¹

Manas Mishra^{*}

Shubha Sankar Banerjee^{*}

Rachita Mondal^{*}

*Department of Mathematics and Statistics Indian Institute of Technology, Kanpur

April 16, 2022

¹Main Reference: Salibian-Barrera and Zamar (2002)

Contents

Introduction

- 2 Formulation of the Problem
- Obscription of Methodology
- Asymptotic Properties of Fast Bootstrap
- 5 Robustness Properties of Fast Bootstrap
- 6 Simulation Study
 - Data Analysis
 - B References

Numerical stability

Computational cost

• Data:
$$(y_i, z'_i)', (y_2, z'_2)', \dots (y_n, z'_n)'$$

• $(y_1, z'_1)' \stackrel{iid}{\sim} H$, let $x_i = (1, z'_i)' \in \mathbb{R}^p$, and the model is,

$$y_i = x_i' \beta_0 + \sigma_0 \varepsilon_i, \ i = 1, 2, ..., n \tag{1}$$

- Ideal Situation: y_i and z_i are independently distributed for all i.
 y_i ~ F₀, z_i ~ G₀, (y_i, z'_i)' ~ H₀.
- *H*∈ ℋ_ε = {*H* = (1 − ε)*H*₀ + ε*H*^{*}}, where *H*^{*} is an arbitrary and unspecified function and 0 ≤ ε < 1/2.

- We consider MM-estimation which is based on two loss functions ρ_0 and ρ_1 , say.
- If $\hat{\beta}_n$ is the MM-estimate of β , then it satisfies the following equations,

$$\frac{1}{n}\sum_{i=1}^{n}\rho_{1}^{\prime}\left(\frac{y_{i}-x_{i}^{\prime}\hat{\beta}_{n}}{\hat{\sigma}_{n}}\right)x_{i}=0$$
(2)

• $\hat{\sigma}_n$ is scale S-estimate which minimizes the following equation,

$$\frac{1}{n}\sum_{i=1}^{n}\rho_0\left(\frac{y_i-x_i'\beta}{\hat{\sigma}_n(\beta)}\right) = b \tag{3}$$

• $\tilde{\beta}_n$ is the associated S-regression estimate.

• $\hat{\beta}_n$ can be represented as a solution of fixed point equations:

$$\hat{\beta}_n = f_n(\hat{\beta}_n)$$

Here f_n depends on the observed data {(y_i, x_i), i = 1,...,n} and for given data f_n is given by,

$$f_n(\hat{\beta}_n) = \left[\sum_{i=1}^n w_i(\hat{\beta}_n) x_i x_i'\right]^{-1} \sum_{i=1}^n w_i(\hat{\beta}_n) x_i y_i$$
(4)

$$w_i(\hat{eta}_n) = rac{
ho_1'(r_i/\hat{\sigma}_n)}{r_i}, ext{ where } r_i = y_i - \hat{eta}_n' x_i.$$

Given a bootstrap sample {(y_i^{*}, x_i^{*}), i = 1,...,n} the recalculated estimates β_n^b solves, β_n^b = f_n^{*}(β_n^b).

Fast Bootstrap

• f_n^* has the same form of f_n , except it is based on the bootstrap samples and the corresponding weights are, given by,

$$w_i^*(\hat{\beta}_n^b) = rac{
ho_1'(r_i^b/\hat{\sigma}_n)}{r_i}, ext{ where } r_i^b = y_i^* - \hat{\beta}_n'^b x_i^*.$$

• Instead of computing $\hat{\beta}_n^b$ we consider, $\hat{\beta}_n^* = f_n^*(\hat{\beta}_n)$, i.e. in f_n^* we use the weights as,

$$w_i^*(\hat{eta}_n) = rac{
ho_1'(r_i^*/\hat{\sigma}_n)}{r_i}, ext{ where } r_i^* = y_i^* - \hat{eta}_n' x_i^*.$$

- It can be shown that
 ^ˆn has a weighted average representation and so it
 is possible to define
 ^ˆn for the bootstrap samples similarly.
- $\hat{\beta}_n^*$ may not reflect true variability of $\hat{\beta}_n$, on applying correction factor our final estimate is:

$$\hat{\beta}_n^{R*} - \hat{\beta}_n = M_n(\hat{\beta}_n^* - \hat{\beta}_n) + d_n(\hat{\sigma}_n^* - \hat{\sigma}_n)$$

- Now that we have put the forward the methodology, we focus on the asymptotic properties of Fast bootstrap estimates.
- The next theorem will show that the asymptotic distribution of fast bootstrap is the same as that of MM-regression estimator.
- We proceed with stating a few regularity conditions on the form of ρ_0 and ρ_1 defined earlier.

Some conditions

MM-estimates are based on two loss function $\rho_0 : \mathbb{R} \to \mathbb{R}_+$ and $\rho_1 : \mathbb{R} \to \mathbb{R}_+$ (defined earlier) which determine the breakdown point and the efficiency of the estimate. They satisfy the following conditions:

C1
$$\forall u \in \mathbb{R}, \rho_0(-u) = \rho_0(u) \text{ and } \rho_1(u) = \rho_1(-u);$$

C2 $\rho_0(0) = 0 = \rho_1(0);$

C3 ρ_0 and ρ_1 are continuously differentiable functions;

C4 $\sup_{x} \rho_0(x) = \sup_{x} \rho_1(x) = 1;$

C5 If $\rho_0(u) < 1$ and $0 \le v < u$, then $\rho_0(v) < \rho_0(u)$. Same condition holds for ρ_1 .

Salibian-Barrera and Zamar (2002) proved that that $\hat{\beta}_n$ (MM-regression estimator), $\hat{\sigma}_n$ (S-scale estimator) and $\tilde{\beta}_n$ (S-regression estimator) are consistent (weakly) for true values β , σ , & $\tilde{\beta}$ where,

$$\mathbb{E}[\rho_1'((Y - X'\beta)/\sigma)] = 0$$
$$\mathbb{E}[\rho_0((Y - X'\tilde{\beta})/\sigma)] = b$$
$$\mathbb{E}[\rho_0'((Y - X'\tilde{\beta})/\sigma)] = 0$$

This result is essential in stating the first main theorem of this topic.

Theorem

If ρ_0 and ρ_1 satisfies the conditions (C1-C5) and have continuous third order derivatives, then given the consistency of $\hat{\beta}_n$, $\hat{\sigma}_n$ and $\tilde{\beta}$, and under a few regularity conditions, almost all sample sequences $\sqrt{n}(\hat{\beta}_n^{R*} - \hat{\beta}_n)$ converges weakly, as n goes to infinity, to the same limit distribution as $\sqrt{n}(\hat{\beta}_n - \beta)$.

- We now focus on the robustness properties of our fast bootstrap.
- Let q_t be the t^{th} upper quantile of a statistics $\hat{\theta}_n$ i.e. q_t satisfies

 $P[\hat{\theta}_n > q_t] = t$

- Singh (1998) defines upper breakdown point of a quantile estimate \hat{q}_t as the minimum proportion of asymmetric contamination that can drive it over any finite bound.
- An estimator based on bootstrap sample can potentially break down if the expected proportion of bootstrap samples that contain more outliers than the breakdown point of the estimate (say τ^{*}) to be more than t.

Theorem

Let $(y_1, x'_1)', \ldots, (y_n, x'_n)' \in \mathbb{R}^{p+1}$ be the random sample following linear model. Assume that the explanatory variables x_1, \ldots, x_n in \mathbb{R}^p are in general position. Let $\hat{\beta}_n$ be an MM-regression estimate and let ε^* be its breakdown point. Then the breakdown point of the tth fast bootstrap quantile estimate of the regression parameters β_j , $j = 1, \ldots, p$ is given by $\min(\varepsilon^*, \varepsilon_R)$, where ε_R satisfies

$$arepsilon_{R} = \inf\{\delta \in [0,1]: P[\texttt{Binomial}(n,\delta) > n-p] \geq t\}$$

Singh (1998) obtained the upper breakdown point of bootstrap estimate \hat{q}_t of q_t :

$$\varepsilon_{\mathcal{C}} = \inf\{\delta \in [0,1] : \mathcal{P}[\texttt{Binomial}(n,\delta) \ge [\varepsilon^* n]] \ge t\}$$

If n > 2p, then $[\varepsilon^* n] \le [n/2] < n-p$. Thus we can clearly see that $\varepsilon_C < \varepsilon_R$.

Simulation Study

Data Description

• Generated the data $y_i = \beta_0 + \beta_1 x_i + \varepsilon$, i = 1, ..., n for n = 30 and 100.

•
$$x_i \sim Normal(0,1), \ \beta_0 = 5 \ \text{and} \ \beta_1 = 5.$$

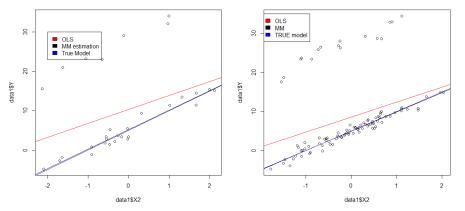
• The errors are generated from F_{ε} with,

$$F_{\varepsilon}(x) = (1 - \varepsilon)\Phi(x) + \varepsilon F_{u}(x)$$

 Φ is the CDF of *Normal*(0,1)and F_u is the CDF of *Uniform*(20,25)

- Considered $\varepsilon = 0.0, 0.20$, i.e. considered 0% and 20% contamination in the error distribution.
- Generated 1000 datasets from the above distribution and built 99% confidence intervals for the parameters

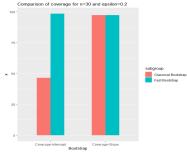
Robustness regression fits



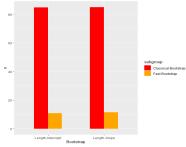
Simulated analysis for n=30 and 20% contamination

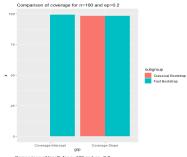
simulated analysis with n=100 and 20% contamination

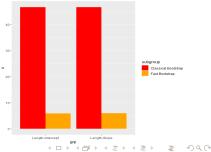
Numerical stability results



Comparison of length for n=30 and epsilon=0.2



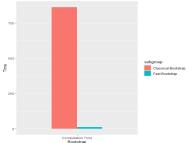


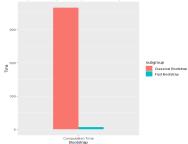


Computational cost results

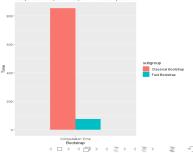
Computation time(m seconds) for m=30 and epsiton=0.20

Computation time(in seconds) for n=30 and epsilon=0.00





Computation time(in seconds) for n=100 and epsilon=0.00

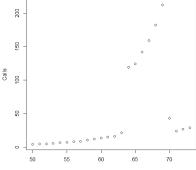


Computation time(in seconds) for n=100 and epsilon=0.20

17/22

1)Belgian International Phone Calls²

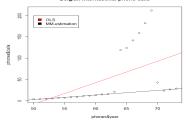
Using 10000 fast bootstrap calculations we estimate the distribution of robust regression estimates and compare results with classical bootstrap method.



Belgian International phone calls dataset

Year

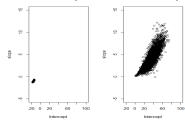
Data Analysis-II

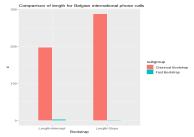


Belgian international phone calls

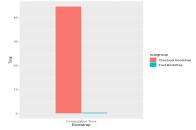
Fast Bootstrap

Classical bootstrap



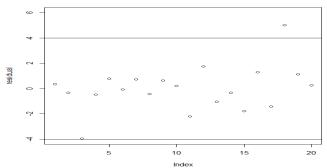


Computation time for Belgian International phone calls dataset



2)Verbal test score data³

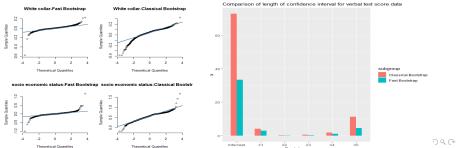
The data consist of verbal mean test scores from 20 schools. There are 5 explanatory variables. The plot of residuals below confirms presence of outliers.



OLS regression

Results on Verbal test score data





Bootstrap

21/22

- Salibian-Barrera, M. and Zamar, R. H. (2002). Bootstrapping robust estimates of regression. *Annals of Statistics*, pages 556–582.
- Singh, K. (1998). Breakdown theory for bootstrap quantiles. The Annals of Statistics, 26(5):1719 – 1732.