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Formulation of the Problem

Data: (yi ,z
′
i)
′,(y2,z

′
2)

′, . . .(yn,z′n)
′

(y1,z
′
1)

′ iid∼ H, let xi = (1,z ′
i )
′ ∈ Rp, and the model is,

yi = x ′
i β0 +σ0εi , i = 1,2, ...,n (1)

Ideal Situation: yi and zi are independently distributed for all i .
yi ∼ F0,zi ∼ G0,(yi ,z ′

i )
′ ∼ H0.

H ∈ Hε = {H = (1− ε)H0 + εH∗} ,where H∗ is an arbitrary and
unspecified function and 0 ≤ ε < 1/2.
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MM-Estimation

We consider MM-estimation which is based on two loss functions ρ0 and
ρ1, say.

If β̂n is the MM-estimate of β , then it satisfies the following equations,

1
n

n

∑
i=1

ρ
′
1

(
yi −x ′

i β̂n

σ̂n

)
xi = 0 (2)

σ̂n is scale S-estimate which minimizes the following equation,

1
n

n

∑
i=1

ρ0

(
yi −x ′

i β

σ̂n(β )

)
= b (3)

β̃n is the associated S-regression estimate.
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Fast Bootstrap

β̂n can be represented as a solution of fixed point equations:

β̂n = fn(β̂n)

Here fn depends on the observed data {(yi ,xi), i = 1, . . . ,n} and for given
data fn is given by,

fn(β̂n) =

[ n

∑
i=1

wi(β̂n)xix ′
i

]−1 n

∑
i=1

wi(β̂n)xiyi (4)

wi(β̂n) =
ρ ′

1(ri/σ̂n)

ri
, where ri = yi − β̂ ′

nxi .

Given a bootstrap sample {(y∗
i ,x

∗
i ), i = 1, . . . ,n} the recalculated

estimates β̂ b
n solves, β̂ b

n = f ∗n (β̂ b
n ).
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Fast Bootstrap

f ∗n has the same form of fn, except it is based on the bootstrap samples
and the corresponding weights are, given by,

w∗
i (β̂

b
n ) =

ρ ′
1(r

b
i /σ̂n)

ri
, where rb

i = y∗
i − β̂

′b
n x∗

i .

Instead of computing β̂ b
n we consider, β̂ ∗

n = f ∗n (β̂n), i.e. in f ∗n we use the
weights as,

w∗
i (β̂n) =

ρ ′
1(r

∗
i /σ̂n)

ri
, where r ∗i = y∗

i − β̂
′
nx∗

i .

It can be shown that σ̂n has a weighted average representation and so it
is possible to define σ̂∗

n for the bootstrap samples similarly.

β̂ ∗
n may not reflect true variability of β̂n, on applying correction factor our

final estimate is:

β̂
R∗
n − β̂n = Mn(β̂

∗
n − β̂n)+dn(σ̂

∗
n − σ̂n)
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Asymptotic Properties of Fast Bootstrap

Now that we have put the forward the methodology, we focus on the
asymptotic properties of Fast bootstrap estimates.

The next theorem will show that the asymptotic distribution of fast
bootstrap is the same as that of MM-regression estimator.

We proceed with stating a few regularity conditions on the form of ρ0 and
ρ1 defined earlier.
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Some conditions

MM-estimates are based on two loss function ρ0 : R→ R+ and ρ1 : R→ R+

(defined earlier) which determine the breakdown point and the efficiency of
the estimate. They satisfy the following conditions:

C1 ∀u ∈ R, ρ0(−u) = ρ0(u) and ρ1(u) = ρ1(−u);

C2 ρ0(0) = 0 = ρ1(0);

C3 ρ0 and ρ1 are continuously differentiable functions;

C4 supx ρ0(x) = supx ρ1(x) = 1;

C5 If ρ0(u)< 1 and 0 ≤ v < u, then ρ0(v)< ρ0(u). Same condition holds for
ρ1.

9 / 22



Some established results

Salibian-Barrera and Zamar (2002) proved that that β̂n (MM-regression
estimator), σ̂n (S-scale estimator) and β̃n (S-regression estimator) are
consistent (weakly) for true values β , σ , & β̃ where,

E[ρ ′
1((Y −X ′

β )/σ)] = 0

E[ρ0((Y −X ′
β̃ )/σ)] = b

E[ρ ′
0((Y −X ′

β̃ )/σ)] = 0

This result is essential in stating the first main theorem of this topic.
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Convergence of Fast Robust Distribution

Theorem
If ρ0 and ρ1 satisfies the conditions (C1-C5) and have continuous third order
derivatives, then given the consistency of β̂n, σ̂n and β̃ , and under a few
regularity conditions, almost all sample sequences

√
n(β̂ R∗

n − β̂n) converges
weakly, as n goes to infinity, to the same limit distribution as

√
n(β̂n −β ).
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Robustness of Fast Bootstrap

We now focus on the robustness properties of our fast bootstrap.
Let qt be the t th upper quantile of a statistics θ̂n i.e. qt satisfies

P[θ̂n > qt ] = t

Singh (1998) defines upper breakdown point of a quantile estimate q̂t as
the minimum proportion of asymmetric contamination that can drive it
over any finite bound.
An estimator based on bootstrap sample can potentially break down if the
expected proportion of bootstrap samples that contain more outliers than
the breakdown point of the estimate (say τ∗) to be more than t .
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Breakdown point of the fast bootstrap quantiles

Theorem
Let (y1,x ′

1)
′, . . . ,(yn,x ′

n)
′ ∈ Rp+1 be the random sample following linear model.

Assume that the explanatory variables x1, . . . ,xn in Rp are in general position.
Let β̂n be an MM-regression estimate and let ε∗ be its breakdown point. Then
the breakdown point of the tth fast bootstrap quantile estimate of the
regression parameters βj , j = 1, . . . ,p is given by min(ε∗,εR), where εR
satisfies

εR = inf{δ ∈ [0,1] : P[Binomial(n,δ )> n−p]≥ t}

Singh (1998) obtained the upper breakdown point of bootstrap estimate q̂t of
qt :

εC = inf{δ ∈ [0,1] : P[Binomial(n,δ )≥ [ε∗n]]≥ t}

If n > 2p, then [ε∗n]≤ [n/2]< n−p. Thus we can clearly see that εC < εR .
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Simulation Study

Data Description
Generated the data yi = β0 +β1 xi + ε, i = 1, . . . ,n for n = 30 and 100.

xi ∼ Normal(0,1), β0 = 5 and β1 = 5.

The errors are generated from Fε with,

Fε(x) = (1− ε)Φ(x)+ εFu(x)

Φ is the CDF of Normal(0,1)andFu is the CDF of Uniform(20,25)

Considered ε = 0.0,0.20, i.e. considered 0% and 20% contamination in
the error distribution.

Generated 1000 datasets from the above distribution and built 99%
confidence intervals for the parameters
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Robustness regression fits
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Numerical stability results
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Computational cost results
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Data Analysis-I

1)Belgian International Phone Calls2

Using 10000 fast bootstrap calculations we estimate the distribution of robust
regression estimates and compare results with classical bootstrap method.

2MASS Package in R
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Data Analysis-II
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Data Analysis-III

2)Verbal test score data3

The data consist of verbal mean test scores from 20 schools.There are 5
explanatory variables.The plot of residuals below confirms presence of
outliers.

3Coleman et. al (1966)
20 / 22



Results on Verbal test score data
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