Fast and Robust Bootstrap¹

Manas Mishra^{*} Shubha Sankar Banerjee^{*} Rachita Mondal^{*}

*Department of Mathematics and Statistics Indian Institute of Technology, Kanpur

April 16, 2022

¹Main Reference: [Salibian-Barrera and Zamar \(2002\)](#page-21-0)

Contents

[Introduction](#page-2-0)

- ² [Formulation of the Problem](#page-3-0)
- ³ [Description of Methodology](#page-4-0)
	- ⁴ [Asymptotic Properties of Fast Bootstrap](#page-7-0)
- ⁵ [Robustness Properties of Fast Bootstrap](#page-11-0)
- ⁶ [Simulation Study](#page-13-0)
	- **[Data Analysis](#page-17-0)**
	- **[References](#page-21-1)**

• Numerical stability

• Computational cost

• Data:
$$
(y_i, z'_i)', (y_2, z'_2)', \ldots (y_n, z'_n)'
$$

 $(y_1, z'_1)'$ ^{iid} *H*, let $x_i = (1, z'_i)'$ ∈ ℝ^{*p*}, and the model is,

$$
y_i = x'_i \beta_0 + \sigma_0 \varepsilon_i, \ i = 1, 2, ..., n \tag{1}
$$

- **Ideal Situation:** *yⁱ* and *zⁱ* are independently distributed for all *i*. *y*_{*i*} ∼ *F*₀, *z_{<i>i*}</sub> ∼ *G*₀, (*y_i*, *z'_i*)['] ∼ *H*₀.
- $H \in \mathscr{H}_{\varepsilon} = \{H = (1 \varepsilon)H_0 + \varepsilon H^*\}$, where H^* is an arbitrary and unspecified function and $0 \le \varepsilon < 1/2$.
- • We consider MM-estimation which is based on two loss functions ρ_0 and ρ_1 , say.
- **•** If $\hat{\beta}_n$ is the MM-estimate of β , then it satisfies the following equations,

$$
\frac{1}{n}\sum_{i=1}^{n}\rho'_{1}\left(\frac{y_{i}-x_{i}'\hat{\beta}_{n}}{\hat{\sigma}_{n}}\right)x_{i}=0
$$
\n(2)

 $\hat{\sigma}_n$ is scale S-estimate which minimizes the following equation,

$$
\frac{1}{n}\sum_{i=1}^{n}\rho_0\left(\frac{y_i-x'_i\beta}{\hat{\sigma}_n(\beta)}\right)=b
$$
\n(3)

 $\hat{\beta}_n$ is the associated S-regression estimate.

 $\hat{\beta}_n$ can be represented as a solution of fixed point equations:

$$
\hat{\beta}_n = f_n(\hat{\beta}_n)
$$

Here f_n depends on the observed data $\{(y_i, x_i), i = 1, \ldots, n\}$ and for given data *fⁿ* is given by,

$$
f_n(\hat{\beta}_n) = \left[\sum_{i=1}^n w_i(\hat{\beta}_n) x_i x'_i \right]^{-1} \sum_{i=1}^n w_i(\hat{\beta}_n) x_i y_i \tag{4}
$$

$$
w_i(\hat{\beta}_n) = \frac{\rho'_1(r_i/\hat{\sigma}_n)}{r_i}, \text{ where } r_i = y_i - \hat{\beta}'_n x_i.
$$

Given a bootstrap sample $\{(y_{i}^*, x_i^*), i = 1, ..., n\}$ the recalculated estimates $\hat{\beta}^{\,b}_{n}$ solves, $\hat{\beta}^{\,b}_{n} = f_n^*(\hat{\beta}^{\,b}_{n}).$

Fast Bootstrap

f^{*}/_{*n*} has the same form of *f*_{*n*}, except it is based on the bootstrap samples and the corresponding weights are, given by,

$$
w_i^*(\hat{\beta}_n^b) = \frac{\rho'_1(r_i^b/\hat{\sigma}_n)}{r_i}, \text{ where } r_i^b = y_i^* - \hat{\beta}_n^{\prime b}x_i^*.
$$

Instead of computing $\hat{\beta}_n^b$ we consider, $\hat{\beta}_n^* = f_n^*(\hat{\beta}_n)$, i.e. in f_n^* we use the weights as,

$$
w_i^*(\hat{\beta}_n)=\frac{\rho'_1(r_i^*/\hat{\sigma}_n)}{r_i}, \text{ where } r_i^*=y_i^*-\hat{\beta}'_n x_i^*.
$$

- It can be shown that $\hat{\sigma}_n$ has a weighted average representation and so it is possible to define $\hat{\sigma}_{n}^*$ for the bootstrap samples similarly.
- $\hat{\beta}_{\v{n}}^*$ may not reflect true variability of $\hat{\beta}_{n}$, on applying correction factor our final estimate is:

$$
\hat{\beta}_n^{R*} - \hat{\beta}_n = M_n(\hat{\beta}_n^* - \hat{\beta}_n) + d_n(\hat{\sigma}_n^* - \hat{\sigma}_n)
$$

イロト イ部 トイモト イモト 一毛

- • Now that we have put the forward the methodology, we focus on the asymptotic properties of Fast bootstrap estimates.
- The next theorem will show that the asymptotic distribution of fast bootstrap is the same as that of MM-regression estimator.
- \bullet We proceed with stating a few regularity conditions on the form of ρ_0 and ρ_1 defined earlier.

Some conditions

MM-estimates are based on two loss function $\rho_0 : \mathbb{R} \to \mathbb{R}_+$ and $\rho_1 : \mathbb{R} \to \mathbb{R}_+$ (defined earlier) which determine the breakdown point and the efficiency of the estimate. They satisfy the following conditions:

C1
$$
\forall u \in \mathbb{R}
$$
, $\rho_0(-u) = \rho_0(u)$ and $\rho_1(u) = \rho_1(-u)$;

C2 $\rho_0(0) = 0 = \rho_1(0)$;

C3 ρ_0 and ρ_1 are continuously differentiable functions;

 $C4 \sup_{x} \rho_0(x) = \sup_{x} \rho_1(x) = 1;$

C5 If $\rho_0(u)$ < 1 and $0 \le v < u$, then $\rho_0(v) < \rho_0(u)$. Same condition holds for ρ_1 .

[Salibian-Barrera and Zamar \(2002\)](#page-21-0) proved that that $\hat{\beta}_n$ (MM-regression estimator), $\hat{\sigma}_n$ (S-scale estimator) and $\tilde{\beta}_n$ (S-regression estimator) are consistent (weakly) for true values β , σ , & $\tilde{\beta}$ where,

$$
\mathbb{E}[\rho'_1((Y-X'\beta)/\sigma)]=0
$$

$$
\mathbb{E}[\rho_0((Y-X'\tilde{\beta})/\sigma)]=b
$$

$$
\mathbb{E}[\rho'_0((Y-X'\tilde{\beta})/\sigma)]=0
$$

This result is essential in stating the first main theorem of this topic.

Theorem

If ρ_0 *and* ρ_1 *satisfies the conditions (C1-C5) and have continuous third order derivatives, then given the consistency of* ˆβ*n,* σˆ*ⁿ and* ˜β*, and under a few regularity conditions, almost all sample sequences* $\sqrt{n}(\hat{\beta}_n^{R*} - \hat{\beta}_n)$ *converges weakly, as n goes to infinity, to the same limit distribution as* $\sqrt{n}(\hat{\beta}_n - \beta)$ *.*

- We now focus on the robustness properties of our fast bootstrap.
- Let q_t be the t^{th} upper quantile of a statistics $\hat{\theta}_n$ i.e. q_t satisfies

 $P[\hat{\theta}_n > q_t] = t$

- \bullet [Singh \(1998\)](#page-21-2) defines upper breakdown point of a quantile estimate \hat{q}_t as the minimum proportion of asymmetric contamination that can drive it over any finite bound.
- An estimator based on bootstrap sample can potentially break down if the expected proportion of bootstrap samples that contain more outliers than the breakdown point of the estimate (say τ^*) to be more than t .

Theorem

Let $(y_1, x'_1)'$, ..., $(y_n, x'_n)' \in \mathbb{R}^{p+1}$ *be the random sample following linear model. Assume that the explanatory variables x*1,...,*xⁿ in* R *^p are in general position. Let* ˆβ*ⁿ be an MM-regression estimate and let* ε [∗] *be its breakdown point. Then the breakdown point of the tth fast bootstrap quantile estimate of the* ϵ *regression parameters* $\beta_j, \ j=1,\ldots, p$ *is given by* $\min(\varepsilon^*,\varepsilon_R),$ *where* ε_R *satisfies*

$$
\varepsilon_R = \inf \{ \delta \in [0,1] : P[\text{Binomial}(n, \delta) > n - p] \ge t \}
$$

[Singh \(1998\)](#page-21-2) obtained the upper breakdown point of bootstrap estimate \hat{q}_t of *qt* :

$$
\epsilon_C = \inf \{ \delta \in [0,1] : P[\texttt{Binomial}(n, \delta) \geq [\epsilon^* n]] \geq t \}
$$

If $n > 2p$, then $[\varepsilon^* n] \leq [n/2] < n-p$. Thus we can clearly see that $\varepsilon_C < \varepsilon_R$.

Simulation Study

Data Description

• Generated the data $y_i = \beta_0 + \beta_1 x_i + \varepsilon$, $i = 1, \ldots, n$ for $n = 30$ and 100.

•
$$
x_i \sim \text{Normal}(0, 1), \ \beta_0 = 5 \text{ and } \beta_1 = 5.
$$

• The errors are generated from *F_ε* with,

$$
F_{\varepsilon}(x)=(1-\varepsilon)\Phi(x)+\varepsilon F_u(x)
$$

Φ is the CDF of *Normal*(0,1)and*F^u* is the CDF of *Uniform*(20,25)

- Considered $\varepsilon = 0.0, 0.20$, i.e. considered 0% and 20% contamination in the error distribution.
- Generated 1000 datasets from the above distribution and built 99% confidence intervals for the parameters

Robustness regression fits

Simulated analysis for n=30 and 20% contamination

simulated analysis with n=100 and 20% contamination

Numerical stability results

Comparison of length for n=30 and epsilon=0.2

Comparison of length for n=100 and ep=0.2

Computational cost results

Computation time(in seconds) for n=30 and ensiton=0.20

Computation time(in seconds) for n=30 and epsilon=0.00

 900 sonsubgroup Ê Classical Bootstrap Fast Rootstran 300 Computation Time Bootstrap

Computation time(in seconds) for n=100 and epsilon=0.00

Computation time(in seconds) for n=100 and ensiton=0.20

17 / 22

1)Belgian International Phone Calls²

Using 10000 fast bootstrap calculations we estimate the distribution of robust regression estimates and compare results with classical bootstrap method.

Belgian International phone calls dataset

Year

Data Analysis-II

Belgian International phone calls

Fast Bootstrap

Classical bootstrap

Comparison of length for Belgian international phone calls

Computation time for Belgian International phone calls dataset

イロト イ団 トイモト イモト 一毛

19 / 22

 OQ

2)Verbal test score data³

The data consist of verbal mean test scores from 20 schools.There are 5 explanatory variables.The plot of residuals below confirms presence of outliers.

OLS rearession

³Coleman et. al (1966)

Results on Verbal test score data

g

å

4 $\overline{2}$ \bullet $\overline{2}$

Theoretical Quantiles

g

g

ę

 $\overline{4}$ $\overline{2}$ ö $\overline{2}$

Theoretical Quantiles

Comparison of length of confidence interval for verbal test score data

- Salibian-Barrera, M. and Zamar, R. H. (2002). Bootstrapping robust estimates of regression. *Annals of Statistics*, pages 556–582.
- Singh, K. (1998). Breakdown theory for bootstrap quantiles. *The Annals of Statistics*, 26(5):1719 – 1732.